Nuprl Lemma : iterate-fun-stream_wf
∀[A:Type]. ∀[x:A]. ∀[f:A ⟶ A].  (iterate-fun-stream(f;x) ∈ stream(A))
Proof
Definitions occuring in Statement : 
iterate-fun-stream: iterate-fun-stream(f;x)
, 
stream: stream(A)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iterate-fun-stream: iterate-fun-stream(f;x)
, 
stream: stream(A)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
isect2: T1 ⋂ T2
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
top: Top
, 
bfalse: ff
, 
s-cons: x.s
Lemmas referenced : 
fix_wf_corec_parameter, 
top_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
universeEquality, 
because_Cache, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
functionExtensionality, 
voidElimination, 
voidEquality, 
hypothesis, 
independent_pairEquality, 
applyEquality, 
cumulativity, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A:Type].  \mforall{}[x:A].  \mforall{}[f:A  {}\mrightarrow{}  A].    (iterate-fun-stream(f;x)  \mmember{}  stream(A))
Date html generated:
2016_05_14-AM-06_24_48
Last ObjectModification:
2015_12_26-AM-11_58_25
Theory : co-recursion
Home
Index