Nuprl Lemma : fix_wf_corec_parameter
∀[F:Type ⟶ Type]. ∀[A:Type]. ∀[G:Top ⟶ Top ⟶ Top ⋂ ⋂T:Type. ((A ⟶ T) ⟶ A ⟶ F[T])]. ∀[a:A].
  (fix(G) a ∈ corec(T.F[T]))
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T]), 
isect2: T1 ⋂ T2, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
member: t ∈ T, 
apply: f a, 
fix: fix(F), 
isect: ⋂x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
corec: corec(T.F[T]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
strong-type-continuous: Continuous+(T.F[T]), 
type-continuous: Continuous(T.F[T]), 
isect2: T1 ⋂ T2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
subtype_rel: A ⊆r B, 
guard: {T}, 
or: P ∨ Q, 
bfalse: ff, 
top: Top, 
nat: ℕ
Lemmas referenced : 
fix_wf_corec2, 
continuous-function, 
continuous-constant, 
continuous-id, 
subtype_rel_self, 
nat_wf, 
isect2_subtype_rel3, 
top_wf, 
subtype_rel_wf, 
bool_wf, 
primrec_wf, 
int_seg_wf, 
isect2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
isect_memberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
universeEquality, 
independent_isectElimination, 
because_Cache, 
hypothesis, 
isectEquality, 
applyEquality, 
cumulativity, 
unionElimination, 
equalityElimination, 
instantiate, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[A:Type].  \mforall{}[G:Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  Top  \mcap{}  \mcap{}T:Type.  ((A  {}\mrightarrow{}  T)  {}\mrightarrow{}  A  {}\mrightarrow{}  F[T])].  \mforall{}[a:A].
    (fix(G)  a  \mmember{}  corec(T.F[T]))
Date html generated:
2016_05_14-AM-06_19_18
Last ObjectModification:
2015_12_26-PM-00_02_37
Theory : co-recursion
Home
Index