Nuprl Lemma : fix_wf_corec_parameter

[F:Type ⟶ Type]. ∀[A:Type]. ∀[G:Top ⟶ Top ⟶ Top ⋂ ⋂T:Type. ((A ⟶ T) ⟶ A ⟶ F[T])]. ∀[a:A].
  (fix(G) a ∈ corec(T.F[T]))


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) isect2: T1 ⋂ T2 uall: [x:A]. B[x] top: Top so_apply: x[s] member: t ∈ T apply: a fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T corec: corec(T.F[T]) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a strong-type-continuous: Continuous+(T.F[T]) type-continuous: Continuous(T.F[T]) isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  subtype_rel: A ⊆B guard: {T} or: P ∨ Q bfalse: ff top: Top nat:
Lemmas referenced :  fix_wf_corec2 continuous-function continuous-constant continuous-id subtype_rel_self nat_wf isect2_subtype_rel3 top_wf subtype_rel_wf bool_wf primrec_wf int_seg_wf isect2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isect_memberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality universeEquality independent_isectElimination because_Cache hypothesis isectEquality applyEquality cumulativity unionElimination equalityElimination instantiate inrFormation equalityTransitivity equalitySymmetry functionExtensionality voidElimination voidEquality natural_numberEquality setElimination rename axiomEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[A:Type].  \mforall{}[G:Top  {}\mrightarrow{}  Top  {}\mrightarrow{}  Top  \mcap{}  \mcap{}T:Type.  ((A  {}\mrightarrow{}  T)  {}\mrightarrow{}  A  {}\mrightarrow{}  F[T])].  \mforall{}[a:A].
    (fix(G)  a  \mmember{}  corec(T.F[T]))



Date html generated: 2016_05_14-AM-06_19_18
Last ObjectModification: 2015_12_26-PM-00_02_37

Theory : co-recursion


Home Index