Nuprl Lemma : fix_wf_corec2
∀[F,H:Type ⟶ Type].
  ∀[G:⋂T:Type. (H[T] ⟶ H[F[T]]) ⋂ Top ⟶ H[Top]]. (fix(G) ∈ H[corec(T.F[T])]) supposing Continuous(T.H[T])
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
isect2: T1 ⋂ T2
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
member: t ∈ T
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
isect2: T1 ⋂ T2
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
bfalse: ff
, 
prop: ℙ
Lemmas referenced : 
fix_wf_corec2', 
isect2_subtype_rel3, 
top_wf, 
subtype_rel_wf, 
corec_wf, 
isect2_subtype_rel2, 
bool_wf, 
isect2_wf, 
type-continuous_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
independent_isectElimination, 
isect_memberEquality, 
unionElimination, 
equalityElimination, 
sqequalRule, 
applyEquality, 
instantiate, 
isectEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
setElimination, 
rename, 
inlFormation, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
because_Cache, 
axiomEquality
Latex:
\mforall{}[F,H:Type  {}\mrightarrow{}  Type].
    \mforall{}[G:\mcap{}T:Type.  (H[T]  {}\mrightarrow{}  H[F[T]])  \mcap{}  Top  {}\mrightarrow{}  H[Top]].  (fix(G)  \mmember{}  H[corec(T.F[T])]) 
    supposing  Continuous(T.H[T])
Date html generated:
2016_05_14-AM-06_19_08
Last ObjectModification:
2015_12_26-PM-00_02_39
Theory : co-recursion
Home
Index