Nuprl Lemma : fix_wf_corec2

[F,H:Type ⟶ Type].
  ∀[G:⋂T:Type. (H[T] ⟶ H[F[T]]) ⋂ Top ⟶ H[Top]]. (fix(G) ∈ H[corec(T.F[T])]) supposing Continuous(T.H[T])


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) type-continuous: Continuous(T.F[T]) isect2: T1 ⋂ T2 uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] member: t ∈ T fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  subtype_rel: A ⊆B so_apply: x[s] or: P ∨ Q so_lambda: λ2x.t[x] bfalse: ff prop:
Lemmas referenced :  fix_wf_corec2' isect2_subtype_rel3 top_wf subtype_rel_wf corec_wf isect2_subtype_rel2 bool_wf isect2_wf type-continuous_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction independent_isectElimination isect_memberEquality unionElimination equalityElimination sqequalRule applyEquality instantiate isectEquality universeEquality cumulativity functionEquality setElimination rename inlFormation lambdaEquality equalityTransitivity equalitySymmetry setEquality because_Cache axiomEquality

Latex:
\mforall{}[F,H:Type  {}\mrightarrow{}  Type].
    \mforall{}[G:\mcap{}T:Type.  (H[T]  {}\mrightarrow{}  H[F[T]])  \mcap{}  Top  {}\mrightarrow{}  H[Top]].  (fix(G)  \mmember{}  H[corec(T.F[T])]) 
    supposing  Continuous(T.H[T])



Date html generated: 2016_05_14-AM-06_19_08
Last ObjectModification: 2015_12_26-PM-00_02_39

Theory : co-recursion


Home Index