Nuprl Lemma : k-intersection_wf

[k:ℕ]. ∀[X:ℕ ⟶ ℕk ⟶ Type].  (⋂n. X[n] ∈ ℕk ⟶ Type)


Proof




Definitions occuring in Statement :  k-intersection: n. X[n] int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T k-intersection: n. X[n] so_apply: x[s] nat:
Lemmas referenced :  nat_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality isectEquality extract_by_obid hypothesis applyEquality functionExtensionality hypothesisEquality sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].    (\mcap{}n.  X[n]  \mmember{}  \mBbbN{}k  {}\mrightarrow{}  Type)



Date html generated: 2018_05_21-PM-00_09_17
Last ObjectModification: 2017_10_18-PM-02_33_49

Theory : co-recursion


Home Index