Nuprl Lemma : sig-to-W
∀[A:Type]. ∀[B:A ⟶ Type]. ((a:A × (¬B[a]))
⇒ W(A;a.B[a]))
Proof
Definitions occuring in Statement :
W: W(A;a.B[a])
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
not: ¬A
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
not: ¬A
,
false: False
Lemmas referenced :
not_wf,
Wsup_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
productElimination,
thin,
productEquality,
hypothesisEquality,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
applyEquality,
hypothesis,
lambdaEquality,
sqequalRule,
universeEquality,
functionEquality,
cumulativity,
because_Cache,
introduction,
independent_functionElimination,
voidElimination
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. ((a:A \mtimes{} (\mneg{}B[a])) {}\mRightarrow{} W(A;a.B[a]))
Date html generated:
2016_05_14-AM-06_17_33
Last ObjectModification:
2015_12_26-PM-00_03_42
Theory : co-recursion
Home
Index