Nuprl Lemma : sig-to-W

[A:Type]. ∀[B:A ⟶ Type].  ((a:A × B[a]))  W(A;a.B[a]))


Proof




Definitions occuring in Statement :  W: W(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] not: ¬A implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] not: ¬A false: False
Lemmas referenced :  not_wf Wsup_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation productElimination thin productEquality hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination applyEquality hypothesis lambdaEquality sqequalRule universeEquality functionEquality cumulativity because_Cache introduction independent_functionElimination voidElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    ((a:A  \mtimes{}  (\mneg{}B[a]))  {}\mRightarrow{}  W(A;a.B[a]))



Date html generated: 2016_05_14-AM-06_17_33
Last ObjectModification: 2015_12_26-PM-00_03_42

Theory : co-recursion


Home Index