Nuprl Lemma : stream-pointwise_transitivity

T:Type. ∀R:T ⟶ T ⟶ ℙ.  (Trans(T;x,y.x y)  Trans(stream(T);s1,s2.s1 stream-pointwise(R) s2))


Proof




Definitions occuring in Statement :  stream-pointwise: stream-pointwise(R) stream: stream(A) trans: Trans(T;x,y.E[x; y]) prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q stream-pointwise: stream-pointwise(R) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] prop: so_apply: x[s] trans: Trans(T;x,y.E[x; y]) isect-rel: isect-rel(T;i.R[i]) guard: {T} and: P ∧ Q cand: c∧ B true: True
Lemmas referenced :  bigrel-induction stream_wf trans_wf and_wf s-hd_wf s-tl_wf all_wf nat_wf isect-rel_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality independent_functionElimination productElimination independent_pairFormation natural_numberEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.    (Trans(T;x,y.x  R  y)  {}\mRightarrow{}  Trans(stream(T);s1,s2.s1  stream-pointwise(R)  s2))



Date html generated: 2016_05_14-AM-06_24_40
Last ObjectModification: 2015_12_26-AM-11_58_19

Theory : co-recursion


Home Index