Nuprl Lemma : bigrel-induction
∀[T:Type]
  ∀P:(T ⟶ T ⟶ ℙ) ⟶ ℙ. ∀F:(T ⟶ T ⟶ ℙ) ⟶ T ⟶ T ⟶ ℙ.
    ((∀Rs:ℕ ⟶ T ⟶ T ⟶ ℙ. ((∀n:ℕ. P[Rs[n]]) ⇒ P[isect-rel(ℕ;n.Rs[n])]))
    ⇒ (∀R:T ⟶ T ⟶ ℙ. (P[R] ⇒ P[F[R]]))
    ⇒ P[λx,y. True]
    ⇒ P[∨R.F[R]])
Proof
Definitions occuring in Statement : 
bigrel: ∨R.F[R], 
isect-rel: isect-rel(T;i.R[i]), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bigrel: ∨R.F[R], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
prop: ℙ, 
so_apply: x[s], 
nat: ℕ, 
top: Top, 
eq_int: (i =z j), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
subtract: n - m, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True
Lemmas referenced : 
primrec_wf, 
true_wf, 
int_seg_wf, 
nat_wf, 
primrec-unroll, 
btrue_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
eq_int_wf, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
le_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
all_wf, 
isect-rel_wf, 
not-equal-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
instantiate, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
applyEquality, 
functionExtensionality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
dependent_set_memberEquality, 
independent_pairFormation, 
addEquality, 
intEquality, 
minusEquality
Latex:
\mforall{}[T:Type]
    \mforall{}P:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  \mBbbP{}.  \mforall{}F:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}Rs:\mBbbN{}  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  P[Rs[n]])  {}\mRightarrow{}  P[isect-rel(\mBbbN{};n.Rs[n])]))
        {}\mRightarrow{}  (\mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (P[R]  {}\mRightarrow{}  P[F[R]]))
        {}\mRightarrow{}  P[\mlambda{}x,y.  True]
        {}\mRightarrow{}  P[\mvee{}R.F[R]])
Date html generated:
2017_04_14-AM-07_38_52
Last ObjectModification:
2017_02_27-PM-03_10_33
Theory : relations
Home
Index