Nuprl Lemma : bigrel-induction

[T:Type]
  ∀P:(T ⟶ T ⟶ ℙ) ⟶ ℙ. ∀F:(T ⟶ T ⟶ ℙ) ⟶ T ⟶ T ⟶ ℙ.
    ((∀Rs:ℕ ⟶ T ⟶ T ⟶ ℙ((∀n:ℕP[Rs[n]])  P[isect-rel(ℕ;n.Rs[n])]))
     (∀R:T ⟶ T ⟶ ℙ(P[R]  P[F[R]]))
     P[λx,y. True]
     P[∨R.F[R]])


Proof




Definitions occuring in Statement :  bigrel: R.F[R] isect-rel: isect-rel(T;i.R[i]) nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q true: True lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bigrel: R.F[R] so_lambda: λ2x.t[x] member: t ∈ T prop: so_apply: x[s] nat: top: Top eq_int: (i =z j) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtract: m nequal: a ≠ b ∈  not: ¬A decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  primrec_wf true_wf int_seg_wf nat_wf primrec-unroll btrue_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert eq_int_wf equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf set_wf less_than_wf primrec-wf2 all_wf isect-rel_wf not-equal-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin sqequalRule lambdaEquality instantiate introduction extract_by_obid isectElimination functionEquality cumulativity hypothesisEquality universeEquality applyEquality functionExtensionality natural_numberEquality setElimination rename independent_functionElimination isect_memberEquality voidElimination voidEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache dependent_pairFormation promote_hyp dependent_set_memberEquality independent_pairFormation addEquality intEquality minusEquality

Latex:
\mforall{}[T:Type]
    \mforall{}P:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  \mBbbP{}.  \mforall{}F:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}Rs:\mBbbN{}  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}n:\mBbbN{}.  P[Rs[n]])  {}\mRightarrow{}  P[isect-rel(\mBbbN{};n.Rs[n])]))
        {}\mRightarrow{}  (\mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (P[R]  {}\mRightarrow{}  P[F[R]]))
        {}\mRightarrow{}  P[\mlambda{}x,y.  True]
        {}\mRightarrow{}  P[\mvee{}R.F[R]])



Date html generated: 2017_04_14-AM-07_38_52
Last ObjectModification: 2017_02_27-PM-03_10_33

Theory : relations


Home Index