Nuprl Lemma : cbv_sqle_2

[a,b,X,Y:Base].
  eval in
  X[x] ≤ eval in
         Y[x] 
  supposing ((a)↓  (X[a] ≤ eval in Y[x]))
  ∧ (∀u,v:Base.  ((a exception(u; v))  (eval in Y[x] exception(u; v))))


Proof




Definitions occuring in Statement :  has-value: (a)↓ callbyvalue: callbyvalue uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q base: Base sqle: s ≤ t sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a has-value: (a)↓ and: P ∧ Q implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} all: x:A. B[x]
Lemmas referenced :  base_wf all_wf sqle_wf_base and_wf is-exception_wf has-value_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut divergentSqle callbyvalueCallbyvalue sqequalHypSubstitution hypothesis sqequalRule callbyvalueReduce productElimination thin independent_functionElimination callbyvalueExceptionCases axiomSqleEquality exceptionSqequal sqleReflexivity lemma_by_obid isectElimination baseApply closedConclusion baseClosed hypothesisEquality functionEquality lambdaEquality sqequalIntensionalEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mforall{}[a,b,X,Y:Base].
    eval  x  =  a  in
    X[x]  \mleq{}  eval  x  =  b  in
                  Y[x] 
    supposing  ((a)\mdownarrow{}  {}\mRightarrow{}  (X[a]  \mleq{}  eval  x  =  b  in  Y[x]))
    \mwedge{}  (\mforall{}u,v:Base.    ((a  \msim{}  exception(u;  v))  {}\mRightarrow{}  (eval  x  =  b  in  Y[x]  \msim{}  exception(u;  v))))



Date html generated: 2016_05_13-PM-03_45_48
Last ObjectModification: 2016_01_14-PM-07_06_50

Theory : computation


Home Index