Nuprl Lemma : lifting-add-ispair-1
∀[a,b,c,d:Top].  (if b is a pair then c otherwise d + a ~ if b is a pair then c + a otherwise d + a)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
top: Top, 
ispair: if z is a pair then a otherwise b, 
add: n + m, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
top: Top, 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T
Lemmas referenced : 
top_wf, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
int-value-type, 
value-type-has-value, 
lifting-strict-ispair
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueAdd, 
hypothesis, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
productElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
addExceptionCases, 
exceptionSqequal, 
inrFormation, 
intEquality, 
imageMemberEquality, 
imageElimination, 
inlFormation, 
sqequalAxiom
Latex:
\mforall{}[a,b,c,d:Top].    (if  b  is  a  pair  then  c  otherwise  d  +  a  \msim{}  if  b  is  a  pair  then  c  +  a  otherwise  d  +  a)
Date html generated:
2016_05_13-PM-03_43_12
Last ObjectModification:
2016_01_14-PM-07_07_50
Theory : computation
Home
Index