Nuprl Lemma : lifting-apply-less
∀[n,m,a,b,c:Top].  (if (n) < (m)  then a  else b c ~ if (n) < (m)  then a c  else (b c))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
top: Top, 
less: if (a) < (b)  then c  else d, 
apply: f a, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
top: Top, 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T
Lemmas referenced : 
top_wf, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-less
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueApply, 
hypothesis, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[n,m,a,b,c:Top].    (if  (n)  <  (m)    then  a    else  b  c  \msim{}  if  (n)  <  (m)    then  a  c    else  (b  c))
Date html generated:
2016_05_13-PM-03_42_54
Last ObjectModification:
2016_01_14-PM-07_08_32
Theory : computation
Home
Index