Nuprl Lemma : lifting-ispair-decide
∀[a,b,c,F,G:Top].
  (if case a of inl(x) => F[x] | inr(x) => G[x] is a pair then b otherwise c ~ case a
   of inl(x) =>
   if F[x] is a pair then b otherwise c
   | inr(x) =>
   if G[x] is a pair then b otherwise c)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
ispair: if z is a pair then a otherwise b
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
top: Top
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
top_wf, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
lifting-strict-decide
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueIspair, 
hypothesis, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
ispairExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[a,b,c,F,G:Top].
    (if  case  a  of  inl(x)  =>  F[x]  |  inr(x)  =>  G[x]  is  a  pair  then  b  otherwise  c  \msim{}  case  a
      of  inl(x)  =>
      if  F[x]  is  a  pair  then  b  otherwise  c
      |  inr(x)  =>
      if  G[x]  is  a  pair  then  b  otherwise  c)
Date html generated:
2016_05_13-PM-03_42_12
Last ObjectModification:
2016_01_14-PM-07_08_49
Theory : computation
Home
Index