Nuprl Lemma : lifting-spread-ispair

[a,b,c,H:Top].
  (let x,y if is pair then otherwise 
   in H[x;y] if is pair then let x,y 
                                   in H[x;y] otherwise let x,y 
                                                       in H[x;y])


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top so_apply: x[s1;s2] ispair: if is pair then otherwise b spread: spread def sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T
Lemmas referenced :  lifting-strict-ispair top_wf equal_wf has-value_wf_base base_wf is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueSpread hypothesis equalityTransitivity equalitySymmetry productEquality productElimination sqleReflexivity hypothesisEquality dependent_functionElimination independent_functionElimination baseApply closedConclusion spreadExceptionCases inrFormation because_Cache imageMemberEquality imageElimination exceptionSqequal inlFormation sqequalAxiom

Latex:
\mforall{}[a,b,c,H:Top].
    (let  x,y  =  if  a  is  a  pair  then  b  otherwise  c 
      in  H[x;y]  \msim{}  if  a  is  a  pair  then  let  x,y  =  b 
                                                                      in  H[x;y]  otherwise  let  x,y  =  c 
                                                                                                              in  H[x;y])



Date html generated: 2017_04_14-AM-07_20_56
Last ObjectModification: 2017_02_27-PM-02_54_29

Theory : computation


Home Index