Nuprl Lemma : normalization-isaxiom

[a,b,c:Top].  (if Ax then otherwise if Ax then Ax otherwise c)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top isaxiom: if Ax then otherwise b apply: a sqequal: t axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ all: x:A. B[x] implies:  Q or: P ∨ Q top: Top
Lemmas referenced :  is-exception_wf has-value_wf_base top_wf has-value-implies-dec-isaxiom-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueIsaxiom sqequalHypSubstitution hypothesis lemma_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination unionElimination sqequalRule sqleReflexivity lambdaFormation isect_memberEquality voidElimination voidEquality because_Cache isaxiomExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed isectElimination sqequalAxiom

Latex:
\mforall{}[a,b,c:Top].    (if  a  =  Ax  then  b  a  otherwise  c  \msim{}  if  a  =  Ax  then  b  Ax  otherwise  c)



Date html generated: 2016_05_13-PM-03_43_30
Last ObjectModification: 2016_01_14-PM-07_08_05

Theory : computation


Home Index