Nuprl Lemma : normalization-isaxiom
∀[a,b,c:Top].  (if a = Ax then b a otherwise c ~ if a = Ax then b Ax otherwise c)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
isaxiom: if z = Ax then a otherwise b
, 
apply: f a
, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
top: Top
Lemmas referenced : 
is-exception_wf, 
has-value_wf_base, 
top_wf, 
has-value-implies-dec-isaxiom-2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueIsaxiom, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
unionElimination, 
sqequalRule, 
sqleReflexivity, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
isaxiomExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion, 
baseClosed, 
isectElimination, 
sqequalAxiom
Latex:
\mforall{}[a,b,c:Top].    (if  a  =  Ax  then  b  a  otherwise  c  \msim{}  if  a  =  Ax  then  b  Ax  otherwise  c)
Date html generated:
2016_05_13-PM-03_43_30
Last ObjectModification:
2016_01_14-PM-07_08_05
Theory : computation
Home
Index