Nuprl Lemma : strictness-atom_eq-left
∀[a,b,c:Top].  (if ⊥=a then b else c fi  ~ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥, 
uall: ∀[x:A]. B[x], 
top: Top, 
atom_eq: if a=b then c else d fi , 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
has-value: (a)↓, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
uimplies: b supposing a, 
false: False, 
top: Top
Lemmas referenced : 
top_wf, 
bottom-sqle, 
is-exception_wf, 
has-value_wf_base, 
exception-not-bottom, 
atom-value-type, 
value-type-has-value, 
bottom_diverge
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueAtomEq, 
sqequalHypSubstitution, 
hypothesis, 
baseClosed, 
sqequalRule, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
productElimination, 
lemma_by_obid, 
independent_functionElimination, 
isectElimination, 
atomEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
atom_eqExceptionCases, 
axiomSqleEquality, 
sqleReflexivity, 
isect_memberEquality, 
voidEquality, 
sqequalAxiom, 
because_Cache
Latex:
\mforall{}[a,b,c:Top].    (if  \mbot{}=a  then  b  else  c  fi    \msim{}  \mbot{})
Date html generated:
2016_05_13-PM-03_44_11
Last ObjectModification:
2016_01_14-PM-07_07_21
Theory : computation
Home
Index