Nuprl Lemma : strictness-atom_eq-right
∀[a,b,c:Top].  (if a=⊥ then b else c fi  ~ eval x = a in ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
callbyvalue: callbyvalue, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
atom_eq: if a=b then c else d fi 
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
false: False
Lemmas referenced : 
top_wf, 
is-exception_wf, 
has-value_wf_base, 
exception-not-bottom, 
value-type-has-value, 
bottom_diverge
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueAtomEq, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
productElimination, 
lemma_by_obid, 
independent_functionElimination, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
atom_eqExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
sqleReflexivity, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
callbyvalueExceptionCases, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[a,b,c:Top].    (if  a=\mbot{}  then  b  else  c  fi    \msim{}  eval  x  =  a  in  \mbot{})
Date html generated:
2016_05_13-PM-03_44_13
Last ObjectModification:
2016_01_14-PM-07_07_42
Theory : computation
Home
Index