Nuprl Lemma : absolutelyfree-subtype

[T:Type]. T ⊆(ℕ ⟶ ℕsupposing absolutelyfree{i:l}(T)


Proof




Definitions occuring in Statement :  absolutelyfree: absolutelyfree{i:l}(T) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop: absolutelyfree: absolutelyfree{i:l}(T) and: P ∧ Q
Lemmas referenced :  absolutelyfree_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule axiomEquality hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality productElimination

Latex:
\mforall{}[T:Type].  T  \msubseteq{}r  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  supposing  absolutelyfree\{i:l\}(T)



Date html generated: 2017_09_29-PM-06_10_41
Last ObjectModification: 2017_04_21-PM-00_38_04

Theory : continuity


Home Index