Nuprl Lemma : absolutelyfree-subtype
∀[T:Type]. T ⊆r (ℕ ⟶ ℕ) supposing absolutelyfree{i:l}(T)
Proof
Definitions occuring in Statement : 
absolutelyfree: absolutelyfree{i:l}(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
absolutelyfree: absolutelyfree{i:l}(T)
, 
and: P ∧ Q
Lemmas referenced : 
absolutelyfree_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
axiomEquality, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination
Latex:
\mforall{}[T:Type].  T  \msubseteq{}r  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  supposing  absolutelyfree\{i:l\}(T)
Date html generated:
2017_09_29-PM-06_10_41
Last ObjectModification:
2017_04_21-PM-00_38_04
Theory : continuity
Home
Index