Nuprl Lemma : afcs-contradicts-kuroda

(↓∃a:ℕ ⟶ ℕ(is-absolutely-free{i:l}(a) ∧ init0(a) ∧ increasing-sequence(a)))
 (∀A:ℕ ⟶ ℙ((∀m:ℕ(¬¬(A m)))  (¬¬(∀m:ℕ(A m))))))


Proof




Definitions occuring in Statement :  is-absolutely-free: is-absolutely-free{i:l}(f) init0: init0(a) increasing-sequence: increasing-sequence(a) nat: prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  implies:  Q not: ¬A squash: T false: False all: x:A. B[x] member: t ∈ T prop: subtype_rel: A ⊆B uall: [x:A]. B[x] exists: x:A. B[x] and: P ∧ Q nat: ge: i ≥ 
Lemmas referenced :  istype-nat subtype_rel_self istype-void squash_wf nat_wf is-absolutely-free_wf init0_wf increasing-sequence_wf ge_wf Kripke2a Kripke2b
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalHypSubstitution imageElimination cut hypothesis sqequalRule Error :functionIsType,  introduction extract_by_obid Error :universeIsType,  universeEquality because_Cache applyEquality hypothesisEquality thin instantiate isectElimination productEquality cumulativity functionEquality dependent_functionElimination Error :lambdaEquality_alt,  setElimination rename independent_functionElimination voidElimination Error :productIsType,  productElimination

Latex:
(\mdownarrow{}\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (is-absolutely-free\{i:l\}(a)  \mwedge{}  init0(a)  \mwedge{}  increasing-sequence(a)))
{}\mRightarrow{}  (\mneg{}(\mforall{}A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}m:\mBbbN{}.  (\mneg{}\mneg{}(A  m)))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mforall{}m:\mBbbN{}.  (A  m))))))



Date html generated: 2019_06_20-PM-03_08_03
Last ObjectModification: 2019_01_17-PM-10_01_51

Theory : continuity


Home Index