Nuprl Lemma : afcs-contradicts-kuroda
(↓∃a:ℕ ⟶ ℕ. (is-absolutely-free{i:l}(a) ∧ init0(a) ∧ increasing-sequence(a)))
⇒ (¬(∀A:ℕ ⟶ ℙ. ((∀m:ℕ. (¬¬(A m))) 
⇒ (¬¬(∀m:ℕ. (A m))))))
Proof
Definitions occuring in Statement : 
is-absolutely-free: is-absolutely-free{i:l}(f)
, 
init0: init0(a)
, 
increasing-sequence: increasing-sequence(a)
, 
nat: ℕ
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
not: ¬A
, 
squash: ↓T
, 
false: False
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
nat: ℕ
, 
ge: i ≥ j 
Lemmas referenced : 
istype-nat, 
subtype_rel_self, 
istype-void, 
squash_wf, 
nat_wf, 
is-absolutely-free_wf, 
init0_wf, 
increasing-sequence_wf, 
ge_wf, 
Kripke2a, 
Kripke2b
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
hypothesis, 
sqequalRule, 
Error :functionIsType, 
introduction, 
extract_by_obid, 
Error :universeIsType, 
universeEquality, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
thin, 
instantiate, 
isectElimination, 
productEquality, 
cumulativity, 
functionEquality, 
dependent_functionElimination, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
independent_functionElimination, 
voidElimination, 
Error :productIsType, 
productElimination
Latex:
(\mdownarrow{}\mexists{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (is-absolutely-free\{i:l\}(a)  \mwedge{}  init0(a)  \mwedge{}  increasing-sequence(a)))
{}\mRightarrow{}  (\mneg{}(\mforall{}A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}m:\mBbbN{}.  (\mneg{}\mneg{}(A  m)))  {}\mRightarrow{}  (\mneg{}\mneg{}(\mforall{}m:\mBbbN{}.  (A  m))))))
Date html generated:
2019_06_20-PM-03_08_03
Last ObjectModification:
2019_01_17-PM-10_01_51
Theory : continuity
Home
Index