Nuprl Lemma : baire2cantor_wf

[a:ℕ ⟶ ℕ]. (baire2cantor(a) ∈ ℕ ⟶ 𝔹)


Proof




Definitions occuring in Statement :  baire2cantor: baire2cantor(a) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  nat: subtype_rel: A ⊆B baire2cantor: baire2cantor(a) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  btrue_wf bfalse_wf bool_wf nat-pred_wf nat_wf eq_int_wf ifthenelse_wf
Rules used in proof :  functionEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache rename setElimination hypothesis hypothesisEquality functionExtensionality applyEquality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  (baire2cantor(a)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{})



Date html generated: 2017_04_21-AM-11_21_24
Last ObjectModification: 2017_04_20-PM-03_37_11

Theory : continuity


Home Index