Nuprl Lemma : baire2cantor_wf
∀[a:ℕ ⟶ ℕ]. (baire2cantor(a) ∈ ℕ ⟶ 𝔹)
Proof
Definitions occuring in Statement : 
baire2cantor: baire2cantor(a)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
baire2cantor: baire2cantor(a)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
btrue_wf, 
bfalse_wf, 
bool_wf, 
nat-pred_wf, 
nat_wf, 
eq_int_wf, 
ifthenelse_wf
Rules used in proof : 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  (baire2cantor(a)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{})
Date html generated:
2017_04_21-AM-11_21_24
Last ObjectModification:
2017_04_20-PM-03_37_11
Theory : continuity
Home
Index