Nuprl Lemma : baire_eq_from_wf
∀[a:ℕ ⟶ ℕ]. ∀[k:ℕ].  (baire_eq_from(a;k) ∈ ℕ ⟶ ℕ)
Proof
Definitions occuring in Statement : 
baire_eq_from: baire_eq_from(a;k)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
nat: ℕ
, 
baire_eq_from: baire_eq_from(a;k)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
lt_int_wf, 
ifthenelse_wf
Rules used in proof : 
functionEquality, 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].    (baire\_eq\_from(a;k)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})
Date html generated:
2017_04_21-AM-11_24_21
Last ObjectModification:
2017_04_20-PM-06_39_47
Theory : continuity
Home
Index