Nuprl Lemma : baire_eq_from_wf

[a:ℕ ⟶ ℕ]. ∀[k:ℕ].  (baire_eq_from(a;k) ∈ ℕ ⟶ ℕ)


Proof




Definitions occuring in Statement :  baire_eq_from: baire_eq_from(a;k) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  nat: baire_eq_from: baire_eq_from(a;k) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  nat_wf lt_int_wf ifthenelse_wf
Rules used in proof :  functionEquality because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality functionExtensionality applyEquality hypothesis hypothesisEquality rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid lambdaEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].    (baire\_eq\_from(a;k)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2017_04_21-AM-11_24_21
Last ObjectModification: 2017_04_20-PM-06_39_47

Theory : continuity


Home Index