Nuprl Lemma : choice-baire

ChoicePrinciple(ℕ ⟶ ℕ)


Proof




Definitions occuring in Statement :  choice-principle: ChoicePrinciple(T) nat: function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  choice-iff-canonicalizable nat_wf trivial-quotient-true canonicalizable_wf canonicalizable-nat-to-nat
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin functionEquality hypothesis productElimination independent_functionElimination isectElimination

Latex:
ChoicePrinciple(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2016_12_12-AM-09_24_55
Last ObjectModification: 2016_11_11-PM-06_33_15

Theory : continuity


Home Index