Nuprl Lemma : choice-baire
ChoicePrinciple(ℕ ⟶ ℕ)
Proof
Definitions occuring in Statement :
choice-principle: ChoicePrinciple(T)
,
nat: ℕ
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
choice-iff-canonicalizable,
nat_wf,
trivial-quotient-true,
canonicalizable_wf,
canonicalizable-nat-to-nat
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
dependent_functionElimination,
thin,
functionEquality,
hypothesis,
productElimination,
independent_functionElimination,
isectElimination
Latex:
ChoicePrinciple(\mBbbN{} {}\mrightarrow{} \mBbbN{})
Date html generated:
2016_12_12-AM-09_24_55
Last ObjectModification:
2016_11_11-PM-06_33_15
Theory : continuity
Home
Index