Nuprl Lemma : canonicalizable-nat-to-nat

canonicalizable(ℕ ⟶ ℕ)


Proof




Definitions occuring in Statement :  canonicalizable: canonicalizable(T) nat: function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q
Lemmas referenced :  canonicalizable-function nat_wf set_subtype_base le_wf int_subtype_base set-value-type int-value-type nat-retractible
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality independent_pairFormation lambdaFormation because_Cache independent_functionElimination

Latex:
canonicalizable(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2016_05_13-PM-03_48_21
Last ObjectModification: 2015_12_26-AM-09_57_43

Theory : call!by!value_2


Home Index