Nuprl Lemma : canonicalizable-nat-to-nat
canonicalizable(ℕ ⟶ ℕ)
Proof
Definitions occuring in Statement : 
canonicalizable: canonicalizable(T)
, 
nat: ℕ
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
canonicalizable-function, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
set-value-type, 
int-value-type, 
nat-retractible
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
independent_pairFormation, 
lambdaFormation, 
because_Cache, 
independent_functionElimination
Latex:
canonicalizable(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})
Date html generated:
2016_05_13-PM-03_48_21
Last ObjectModification:
2015_12_26-AM-09_57_43
Theory : call!by!value_2
Home
Index