Nuprl Lemma : canonicalizable-function

[T:Type]
  ∀[B:T ⟶ Type]. retractible(T)  canonicalizable(x:T ⟶ B[x]) supposing ∀x:T. (B[x] ⊆Base) 
  supposing (T ⊆Base) ∧ value-type(T)


Proof




Definitions occuring in Statement :  retractible: retractible(T) canonicalizable: canonicalizable(T) value-type: value-type(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q subtype_rel: A ⊆B value-type: value-type(T) has-value: (a)↓ all: x:A. B[x] implies:  Q retractible: retractible(T) exists: x:A. B[x] canonicalizable: canonicalizable(T) prop: so_apply: x[s]
Lemmas referenced :  base_wf retractible_wf subtype_rel_wf value-type_wf equal-wf-base subtype_rel-equal has-value_wf_base is-exception_wf sqle_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis Error :isect_memberEquality_alt,  isectElimination hypothesisEquality axiomSqleEquality Error :equalityIsType4,  Error :universeIsType,  because_Cache equalityTransitivity equalitySymmetry extract_by_obid rename Error :lambdaEquality_alt,  dependent_functionElimination Error :lambdaFormation_alt,  Error :dependent_pairFormation_alt,  independent_isectElimination Error :functionIsType,  applyEquality Error :inhabitedIsType,  Error :productIsType,  universeEquality pointwiseFunctionality baseApply closedConclusion baseClosed sqequalSqle divergentSqle callbyvalueCallbyvalue callbyvalueReduce independent_functionElimination functionExtensionality cumulativity Error :equalityIsType1,  sqleReflexivity hyp_replacement applyLambdaEquality callbyvalueExceptionCases exceptionSqequal Error :equalityIsType2

Latex:
\mforall{}[T:Type]
    \mforall{}[B:T  {}\mrightarrow{}  Type].  retractible(T)  {}\mRightarrow{}  canonicalizable(x:T  {}\mrightarrow{}  B[x])  supposing  \mforall{}x:T.  (B[x]  \msubseteq{}r  Base) 
    supposing  (T  \msubseteq{}r  Base)  \mwedge{}  value-type(T)



Date html generated: 2019_06_20-AM-11_28_26
Last ObjectModification: 2018_09_28-PM-02_49_59

Theory : call!by!value_2


Home Index