Step
*
1
1
1
of Lemma
general-cantor-to-int-uniform-continuity
1. B : ℕ ⟶ ℕ+
2. F : (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
3. n : ℕ
4. ∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕn ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ))
⊢ ∃n:ℕ
((∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕn ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ)))
∧ (∀j:ℕ. ((∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕj ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ)))
⇒ (n ≤ j))))
BY
{ Assert ⌜∀j:ℕ. Dec(∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕj ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ)))⌝⋅ }
1
.....assertion.....
1. B : ℕ ⟶ ℕ+
2. F : (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
3. n : ℕ
4. ∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕn ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ))
⊢ ∀j:ℕ. Dec(∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕj ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ)))
2
1. B : ℕ ⟶ ℕ+
2. F : (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
3. n : ℕ
4. ∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕn ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ))
5. ∀j:ℕ. Dec(∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕj ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ)))
⊢ ∃n:ℕ
((∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕn ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ)))
∧ (∀j:ℕ. ((∀f,g:i:ℕ ⟶ ℕB[i]. ((f = g ∈ (i:ℕj ⟶ ℕB[i]))
⇒ ((F f) = (F g) ∈ ℤ)))
⇒ (n ≤ j))))
Latex:
Latex:
1. B : \mBbbN{} {}\mrightarrow{} \mBbbN{}\msupplus{}
2. F : (k:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[k]) {}\mrightarrow{} \mBbbZ{}
3. n : \mBbbN{}
4. \mforall{}f,g:i:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[i]. ((f = g) {}\mRightarrow{} ((F f) = (F g)))
\mvdash{} \mexists{}n:\mBbbN{}
((\mforall{}f,g:i:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[i]. ((f = g) {}\mRightarrow{} ((F f) = (F g))))
\mwedge{} (\mforall{}j:\mBbbN{}. ((\mforall{}f,g:i:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[i]. ((f = g) {}\mRightarrow{} ((F f) = (F g)))) {}\mRightarrow{} (n \mleq{} j))))
By
Latex:
Assert \mkleeneopen{}\mforall{}j:\mBbbN{}. Dec(\mforall{}f,g:i:\mBbbN{} {}\mrightarrow{} \mBbbN{}B[i]. ((f = g) {}\mRightarrow{} ((F f) = (F g))))\mkleeneclose{}\mcdot{}
Home
Index