Step
*
1
1
1
of Lemma
general-cantor-to-int-uniform-continuity
1. B : ℕ ⟶ ℕ+
2. F : (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
3. n : ℕ
4. ∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕn ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ))
⊢ ∃n:ℕ
   ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕn ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ)))
   ∧ (∀j:ℕ. ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕj ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ))) 
⇒ (n ≤ j))))
BY
{ Assert ⌜∀j:ℕ. Dec(∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕj ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ)))⌝⋅ }
1
.....assertion..... 
1. B : ℕ ⟶ ℕ+
2. F : (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
3. n : ℕ
4. ∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕn ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ))
⊢ ∀j:ℕ. Dec(∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕj ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ)))
2
1. B : ℕ ⟶ ℕ+
2. F : (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
3. n : ℕ
4. ∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕn ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ))
5. ∀j:ℕ. Dec(∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕj ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ)))
⊢ ∃n:ℕ
   ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕn ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ)))
   ∧ (∀j:ℕ. ((∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕj ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ))) 
⇒ (n ≤ j))))
Latex:
Latex:
1.  B  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}
2.  F  :  (k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[k])  {}\mrightarrow{}  \mBbbZ{}
3.  n  :  \mBbbN{}
4.  \mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))
\mvdash{}  \mexists{}n:\mBbbN{}
      ((\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
      \mwedge{}  (\mforall{}j:\mBbbN{}.  ((\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))  {}\mRightarrow{}  (n  \mleq{}  j))))
By
Latex:
Assert  \mkleeneopen{}\mforall{}j:\mBbbN{}.  Dec(\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))\mkleeneclose{}\mcdot{}
Home
Index