Step
*
1
1
1
1
2
of Lemma
general-cantor-to-int-uniform-continuity
1. B : ℕ ⟶ ℕ+
2. F : (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
3. n : ℕ
4. ∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕn ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ))
5. j : ℕ
6. ¬j < n
⊢ Dec(∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕj ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ)))
BY
{ ((OrLeft THENA Auto) THEN ParallelOp -3 THEN RepeatFor 3 (ParallelLast)) }
Latex:
Latex:
1.  B  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}
2.  F  :  (k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[k])  {}\mrightarrow{}  \mBbbZ{}
3.  n  :  \mBbbN{}
4.  \mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))
5.  j  :  \mBbbN{}
6.  \mneg{}j  <  n
\mvdash{}  Dec(\mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
By
Latex:
((OrLeft  THENA  Auto)  THEN  ParallelOp  -3  THEN  RepeatFor  3  (ParallelLast))
Home
Index