Nuprl Lemma : initF_wf

[a:ℕ ⟶ 𝔹]. (initF(a) ∈ ℙ)


Proof




Definitions occuring in Statement :  initF: initF(a) nat: bool: 𝔹 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: initF: initF(a) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  le_wf false_wf nat_wf bool_wf equal-wf-T-base
Rules used in proof :  functionEquality equalitySymmetry equalityTransitivity axiomEquality baseClosed lambdaFormation independent_pairFormation natural_numberEquality dependent_set_memberEquality hypothesisEquality functionExtensionality applyEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  (initF(a)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_21-AM-11_22_09
Last ObjectModification: 2017_04_20-PM-03_41_40

Theory : continuity


Home Index