Nuprl Lemma : initF_wf
∀[a:ℕ ⟶ 𝔹]. (initF(a) ∈ ℙ)
Proof
Definitions occuring in Statement : 
initF: initF(a)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
initF: initF(a)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
le_wf, 
false_wf, 
nat_wf, 
bool_wf, 
equal-wf-T-base
Rules used in proof : 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
baseClosed, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  (initF(a)  \mmember{}  \mBbbP{})
Date html generated:
2017_04_21-AM-11_22_09
Last ObjectModification:
2017_04_20-PM-03_41_40
Theory : continuity
Home
Index