Nuprl Lemma : nat-star_wf
ℕ* ∈ Type
Proof
Definitions occuring in Statement : 
nat-star: ℕ*
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
nat-star: ℕ*
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_wf, 
all_wf, 
less_than_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
functionEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
natural_numberEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
intEquality
Latex:
\mBbbN{}*  \mmember{}  Type
Date html generated:
2016_12_12-AM-09_24_07
Last ObjectModification:
2016_11_18-AM-09_58_46
Theory : continuity
Home
Index