Nuprl Lemma : nat-star_wf

* ∈ Type


Proof




Definitions occuring in Statement :  nat-star: * member: t ∈ T universe: Type
Definitions unfolded in proof :  nat-star: * member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B nat: so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  nat_wf all_wf less_than_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality functionEquality cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin lambdaEquality natural_numberEquality applyEquality functionExtensionality hypothesisEquality setElimination rename because_Cache intEquality

Latex:
\mBbbN{}*  \mmember{}  Type



Date html generated: 2016_12_12-AM-09_24_07
Last ObjectModification: 2016_11_18-AM-09_58_46

Theory : continuity


Home Index