Nuprl Lemma : not-CCC-infinite
∀[A:Type]. ((∃f:A ⟶ ℕ. Surj(A;ℕ;f)) 
⇒ (¬CCC(A)))
Proof
Definitions occuring in Statement : 
contra-cc: CCC(T)
, 
surject: Surj(A;B;f)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
contra-cc: CCC(T)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
contra-dcc: dCCC(T)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
assert_wf, 
istype-universe, 
nat_wf, 
surject_wf, 
contra-cc_wf, 
bool_wf, 
istype-assert, 
istype-nat, 
not-d-CCC-infinite
Rules used in proof : 
universeEquality, 
instantiate, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
dependent_functionElimination, 
Error :lambdaEquality_alt, 
voidElimination, 
Error :universeIsType, 
applyEquality, 
Error :productIsType, 
because_Cache, 
Error :functionIsType, 
sqequalRule, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:Type].  ((\mexists{}f:A  {}\mrightarrow{}  \mBbbN{}.  Surj(A;\mBbbN{};f))  {}\mRightarrow{}  (\mneg{}CCC(A)))
Date html generated:
2019_06_20-PM-03_00_58
Last ObjectModification:
2019_06_12-PM-09_01_56
Theory : continuity
Home
Index