Nuprl Lemma : phi-star_wf
∀[Phi:((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ ℕ]. (Phi* ∈ ((ℕ ⟶ ℕ) ⟶ ℕ) ⟶ finite-nat-seq())
Proof
Definitions occuring in Statement : 
phi-star: Phi*
, 
finite-nat-seq: finite-nat-seq()
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
phi-star: Phi*
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_wf, 
zero-seq_wf, 
mk-finite-nat-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[Phi:((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}].  (Phi*  \mmember{}  ((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  finite-nat-seq())
Date html generated:
2016_05_14-PM-09_55_42
Last ObjectModification:
2016_01_15-AM-07_49_38
Theory : continuity
Home
Index