Nuprl Lemma : shift-seq_wf

[c:(ℕ ⟶ ℕ) ⟶ ℕ]. ∀[a:ℕ ⟶ ℕ].  (shift-seq(c;a) ∈ ℕ ⟶ ℕ)


Proof




Definitions occuring in Statement :  shift-seq: shift-seq(c;a) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  shift-seq: shift-seq(c;a) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  cons-nat-seq_wf nat_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid functionEquality hypothesisEquality functionExtensionality applyEquality lambdaEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[c:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].    (shift-seq(c;a)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2017_04_20-AM-07_35_35
Last ObjectModification: 2017_04_07-PM-05_53_13

Theory : continuity


Home Index