Nuprl Lemma : shift-seq_wf
∀[c:(ℕ ⟶ ℕ) ⟶ ℕ]. ∀[a:ℕ ⟶ ℕ].  (shift-seq(c;a) ∈ ℕ ⟶ ℕ)
Proof
Definitions occuring in Statement : 
shift-seq: shift-seq(c;a)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
shift-seq: shift-seq(c;a)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
cons-nat-seq_wf, 
nat_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
functionEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[c:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].    (shift-seq(c;a)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})
Date html generated:
2017_04_20-AM-07_35_35
Last ObjectModification:
2017_04_07-PM-05_53_13
Theory : continuity
Home
Index