Nuprl Lemma : cons-nat-seq_wf

[n:ℕ]. ∀[a:ℕ ⟶ ℕ].  (cons-nat-seq(n;a) ∈ ℕ ⟶ ℕ)


Proof




Definitions occuring in Statement :  cons-nat-seq: cons-nat-seq(n;a) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  prop: and: P ∧ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) all: x:A. B[x] ge: i ≥  not: ¬A implies:  Q false: False nat: cons-nat-seq: cons-nat-seq(n;a) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  le_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties subtract_wf nat_wf
Rules used in proof :  functionEquality equalitySymmetry equalityTransitivity axiomEquality computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality dependent_pairFormation independent_isectElimination unionElimination dependent_functionElimination isectElimination dependent_set_memberEquality extract_by_obid functionExtensionality applyEquality hypothesisEquality natural_numberEquality hypothesis because_Cache rename thin setElimination sqequalHypSubstitution int_eqEquality lambdaEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].    (cons-nat-seq(n;a)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2017_04_20-AM-07_35_26
Last ObjectModification: 2017_04_07-PM-05_52_41

Theory : continuity


Home Index