Nuprl Lemma : strong-continuity-test-bound-unroll

[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)]. ∀[n:ℕ]. ∀[f,b:Top].
  (strong-continuity-test-bound(M;n;f;b) if (n =z 0) then inr Ax 
  if 1 <then inr Ax 
  if (n =z b) then inl b
  if isl(M (n 1) f) then inr Ax 
  else strong-continuity-test-bound(M;n 1;f;b)
  fi )


Proof




Definitions occuring in Statement :  strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b) int_seg: {i..j-} nat: ifthenelse: if then else fi  isl: isl(x) lt_int: i <j eq_int: (i =z j) uall: [x:A]. B[x] top: Top unit: Unit apply: a function: x:A ⟶ B[x] inr: inr  inl: inl x union: left right subtract: m natural_number: $n universe: Type sqequal: t axiom: Ax
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] nat: strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b) top: Top
Lemmas referenced :  primrec-unroll unit_wf2 int_seg_wf nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut lemma_by_obid hypothesis because_Cache functionEquality sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality cumulativity unionEquality universeEquality isect_memberFormation introduction sqequalAxiom sqequalRule isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f,b:Top].
    (strong-continuity-test-bound(M;n;f;b)  \msim{}  if  (n  =\msubz{}  0)  then  inr  Ax 
    if  n  -  1  <z  b  then  inr  Ax 
    if  (n  -  1  =\msubz{}  b)  then  inl  b
    if  isl(M  (n  -  1)  f)  then  inr  Ax 
    else  strong-continuity-test-bound(M;n  -  1;f;b)
    fi  )



Date html generated: 2016_05_19-AM-11_59_37
Last ObjectModification: 2016_05_17-AM-08_56_39

Theory : continuity


Home Index