Nuprl Lemma : strong-continuity-test-bound-unroll
∀[T:Type]. ∀[M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)]. ∀[n:ℕ]. ∀[f,b:Top].
  (strong-continuity-test-bound(M;n;f;b) ~ if (n =z 0) then inr Ax 
  if n - 1 <z b then inr Ax 
  if (n - 1 =z b) then inl b
  if isl(M (n - 1) f) then inr Ax 
  else strong-continuity-test-bound(M;n - 1;f;b)
  fi )
Proof
Definitions occuring in Statement : 
strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
isl: isl(x)
, 
lt_int: i <z j
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inr: inr x 
, 
inl: inl x
, 
union: left + right
, 
subtract: n - m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
, 
axiom: Ax
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
strong-continuity-test-bound: strong-continuity-test-bound(M;n;f;b)
, 
top: Top
Lemmas referenced : 
primrec-unroll, 
unit_wf2, 
int_seg_wf, 
nat_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
hypothesis, 
because_Cache, 
functionEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
cumulativity, 
unionEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[T:Type].  \mforall{}[M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)].  \mforall{}[n:\mBbbN{}].  \mforall{}[f,b:Top].
    (strong-continuity-test-bound(M;n;f;b)  \msim{}  if  (n  =\msubz{}  0)  then  inr  Ax 
    if  n  -  1  <z  b  then  inr  Ax 
    if  (n  -  1  =\msubz{}  b)  then  inl  b
    if  isl(M  (n  -  1)  f)  then  inr  Ax 
    else  strong-continuity-test-bound(M;n  -  1;f;b)
    fi  )
Date html generated:
2016_05_19-AM-11_59_37
Last ObjectModification:
2016_05_17-AM-08_56_39
Theory : continuity
Home
Index