Step
*
1
1
2
1
1
2
2
of Lemma
strong-continuity3-implies-4
1. [T] : Type
2. F : (ℕ ⟶ T) ⟶ ℕ
3. M : n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
4. ∀f:ℕ ⟶ T. ∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))))
5. d : ∀n:ℕ. ∀s:ℕn ⟶ T.  Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
6. f : ℕ ⟶ T
7. n : ℕ
8. (M n f) = (inl (F f)) ∈ (ℕ?)
9. ∀m:ℕ. ((↑isl(M m f)) 
⇒ (m = n ∈ ℕ))
10. i : ℕimax(n;F f) + 1
11. x1 : (↑isl(M i f)) ∧ outl(M i f) < imax(n;F f) + 1
12. (d (imax(n;F f) + 1) f) = (inl <i, x1>) ∈ Dec(∃i:ℕimax(n;F f) + 1. ((↑isl(M i f)) ∧ outl(M i f) < imax(n;F f) + 1))
13. m : ℕ
14. y : ¬(∃i:ℕm. ((↑isl(M i f)) ∧ outl(M i f) < m))
15. (d m f) = (inr y ) ∈ Dec(∃i:ℕm. ((↑isl(M i f)) ∧ outl(M i f) < m))
⊢ False 
⇒ ((inr ⋅ ) = (inl (F f)) ∈ (ℕ?))
BY
{ TACTIC:Auto }
Latex:
Latex:
1.  [T]  :  Type
2.  F  :  (\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}
3.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (\mBbbN{}?)
4.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.  \mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n))))
5.  d  :  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.    Dec(\mexists{}i:\mBbbN{}n.  ((\muparrow{}isl(M  i  s))  \mwedge{}  outl(M  i  s)  <  n))
6.  f  :  \mBbbN{}  {}\mrightarrow{}  T
7.  n  :  \mBbbN{}
8.  (M  n  f)  =  (inl  (F  f))
9.  \mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  (m  =  n))
10.  i  :  \mBbbN{}imax(n;F  f)  +  1
11.  x1  :  (\muparrow{}isl(M  i  f))  \mwedge{}  outl(M  i  f)  <  imax(n;F  f)  +  1
12.  (d  (imax(n;F  f)  +  1)  f)  =  (inl  <i,  x1>)
13.  m  :  \mBbbN{}
14.  y  :  \mneg{}(\mexists{}i:\mBbbN{}m.  ((\muparrow{}isl(M  i  f))  \mwedge{}  outl(M  i  f)  <  m))
15.  (d  m  f)  =  (inr  y  )
\mvdash{}  False  {}\mRightarrow{}  ((inr  \mcdot{}  )  =  (inl  (F  f)))
By
Latex:
TACTIC:Auto
Home
Index