Nuprl Lemma : truth_wf
Truth ∈ 𝕌'
Proof
Definitions occuring in Statement : 
truth: Truth
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
truth: Truth
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
equiv_rel_iff, 
iff_wf, 
quotient_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
universeEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination
Latex:
Truth  \mmember{}  \mBbbU{}'
Date html generated:
2016_05_14-PM-09_42_22
Last ObjectModification:
2016_01_11-PM-03_45_41
Theory : continuity
Home
Index