Nuprl Lemma : truth_wf

Truth ∈ 𝕌'


Proof




Definitions occuring in Statement :  truth: Truth member: t ∈ T universe: Type
Definitions unfolded in proof :  truth: Truth member: t ∈ T uall: [x:A]. B[x] prop: so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  equiv_rel_iff iff_wf quotient_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin universeEquality lambdaEquality hypothesisEquality hypothesis applyEquality cumulativity because_Cache independent_isectElimination

Latex:
Truth  \mmember{}  \mBbbU{}'



Date html generated: 2016_05_14-PM-09_42_22
Last ObjectModification: 2016_01_11-PM-03_45_41

Theory : continuity


Home Index