Nuprl Lemma : unbounded-ccc-nset-decidable
∀K:Type. (CCCNSet(K) ⇒ (∀B:ℕ. ∃k:K. B < k) ⇒ (∀l:ℕ. ((l ∈ K) ∨ (¬(l ∈ K)))))
Proof
Definitions occuring in Statement : 
ccc-nset: CCCNSet(K), 
nat: ℕ, 
less_than: a < b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
false: False, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
not: ¬A, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
or: P ∨ Q, 
decidable: Dec(P), 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
weakly-decidable-nset: WD(K), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
ccc-nset: CCCNSet(K), 
implies: P ⇒ Q, 
member: t ∈ T, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_subtype_base, 
istype-int, 
le_wf, 
set_subtype_base, 
istype-le, 
decidable__le, 
istype-universe, 
ccc-nset_wf, 
nat_wf, 
subtype_rel_transitivity, 
istype-less_than, 
istype-nat, 
ccc-nset-minimum, 
ccc-nset-weakly-decidable
Rules used in proof : 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalBase, 
natural_numberEquality, 
Error :equalityIstype, 
Error :inrFormation_alt, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
universeEquality, 
instantiate, 
independent_isectElimination, 
intEquality, 
Error :inhabitedIsType, 
Error :lambdaEquality_alt, 
applyEquality, 
rename, 
setElimination, 
isectElimination, 
Error :universeIsType, 
Error :productIsType, 
Error :functionIsType, 
sqequalRule, 
because_Cache, 
productElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}K:Type.  (CCCNSet(K)  {}\mRightarrow{}  (\mforall{}B:\mBbbN{}.  \mexists{}k:K.  B  <  k)  {}\mRightarrow{}  (\mforall{}l:\mBbbN{}.  ((l  \mmember{}  K)  \mvee{}  (\mneg{}(l  \mmember{}  K)))))
Date html generated:
2019_06_20-PM-03_02_36
Last ObjectModification:
2019_06_13-PM-04_29_07
Theory : continuity
Home
Index