Nuprl Lemma : and_functionality_wrt_uiff2
∀[P1,P2,Q1,Q2:ℙ]. ({uiff(P1;P2)}
⇒ (Q1 = Q2 ∈ ℙ)
⇒ {P1 ∧ Q1
⇐⇒ P2 ∧ Q2})
Proof
Definitions occuring in Statement :
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
guard: {T}
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
equal: s = t ∈ T
Definitions unfolded in proof :
guard: {T}
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
iff: P
⇐⇒ Q
,
uimplies: b supposing a
,
member: t ∈ T
,
prop: ℙ
,
rev_implies: P
⇐ Q
Lemmas referenced :
equal_wf,
uiff_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
lambdaFormation,
sqequalHypSubstitution,
productElimination,
thin,
independent_pairFormation,
independent_isectElimination,
hypothesis,
cut,
equalitySymmetry,
hyp_replacement,
Error :applyLambdaEquality,
hypothesisEquality,
productEquality,
cumulativity,
instantiate,
introduction,
extract_by_obid,
isectElimination,
universeEquality
Latex:
\mforall{}[P1,P2,Q1,Q2:\mBbbP{}]. (\{uiff(P1;P2)\} {}\mRightarrow{} (Q1 = Q2) {}\mRightarrow{} \{P1 \mwedge{} Q1 \mLeftarrow{}{}\mRightarrow{} P2 \mwedge{} Q2\})
Date html generated:
2016_10_21-AM-09_34_59
Last ObjectModification:
2016_07_12-AM-04_59_38
Theory : core_2
Home
Index