Nuprl Lemma : and_functionality_wrt_uiff3
∀[P1,P2,Q1,Q2:ℙ].  ((P1 = P2 ∈ ℙ) 
⇒ {uiff(Q1;Q2)} 
⇒ {P1 ∧ Q1 
⇐⇒ P2 ∧ Q2})
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
uiff_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
independent_isectElimination, 
hypothesis, 
cut, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
hypothesisEquality, 
productEquality, 
cumulativity, 
introduction, 
extract_by_obid, 
isectElimination, 
instantiate, 
universeEquality
Latex:
\mforall{}[P1,P2,Q1,Q2:\mBbbP{}].    ((P1  =  P2)  {}\mRightarrow{}  \{uiff(Q1;Q2)\}  {}\mRightarrow{}  \{P1  \mwedge{}  Q1  \mLeftarrow{}{}\mRightarrow{}  P2  \mwedge{}  Q2\})
Date html generated:
2016_10_21-AM-09_35_02
Last ObjectModification:
2016_07_12-AM-04_59_40
Theory : core_2
Home
Index