Nuprl Lemma : and_functionality_wrt_uiff3

[P1,P2,Q1,Q2:ℙ].  ((P1 P2 ∈ ℙ {uiff(Q1;Q2)}  {P1 ∧ Q1 ⇐⇒ P2 ∧ Q2})


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] prop: guard: {T} iff: ⇐⇒ Q implies:  Q and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] implies:  Q uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q uimplies: supposing a member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  uiff_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation independent_isectElimination hypothesis cut equalitySymmetry hyp_replacement Error :applyLambdaEquality,  hypothesisEquality productEquality cumulativity introduction extract_by_obid isectElimination instantiate universeEquality

Latex:
\mforall{}[P1,P2,Q1,Q2:\mBbbP{}].    ((P1  =  P2)  {}\mRightarrow{}  \{uiff(Q1;Q2)\}  {}\mRightarrow{}  \{P1  \mwedge{}  Q1  \mLeftarrow{}{}\mRightarrow{}  P2  \mwedge{}  Q2\})



Date html generated: 2016_10_21-AM-09_35_02
Last ObjectModification: 2016_07_12-AM-04_59_40

Theory : core_2


Home Index