Nuprl Lemma : atom_eq_wf

[T:Type]. ∀[a,b:T]. ∀[x,y:Atom].  (if x=y then else fi  ∈ T)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] member: t ∈ T atom_eq: if a=b then else fi  atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T false: False implies:  Q not: ¬A
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut atom_eqEquality hypothesisEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry atomEquality isect_memberEquality isectElimination thin because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T].  \mforall{}[x,y:Atom].    (if  x=y  then  a  else  b  fi    \mmember{}  T)



Date html generated: 2019_06_20-AM-11_18_27
Last ObjectModification: 2018_09_13-AM-01_12_24

Theory : core_2


Home Index