Nuprl Lemma : classical-and
∀[A,B:ℙ].  uiff({A} ∧ {B};{A ∧ B})
Proof
Definitions occuring in Statement : 
classical: {P}
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
classical: {P}
, 
cand: A c∧ B
, 
prop: ℙ
, 
unit: Unit
Lemmas referenced : 
classical_wf, 
and_wf, 
it_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
setElimination, 
rename, 
dependent_set_memberEquality, 
lemma_by_obid, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
sqequalRule, 
axiomEquality, 
natural_numberEquality, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:\mBbbP{}].    uiff(\{A\}  \mwedge{}  \{B\};\{A  \mwedge{}  B\})
Date html generated:
2016_05_13-PM-03_16_47
Last ObjectModification:
2016_01_06-PM-05_20_17
Theory : core_2
Home
Index