Nuprl Lemma : decidable__iff
∀[P,Q:ℙ].  (Dec(P) 
⇒ Dec(Q) 
⇒ Dec(P 
⇐⇒ Q))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
decidable__and2, 
decidable__implies, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
isect_memberEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    (Dec(P)  {}\mRightarrow{}  Dec(Q)  {}\mRightarrow{}  Dec(P  \mLeftarrow{}{}\mRightarrow{}  Q))
Date html generated:
2019_06_20-AM-11_15_00
Last ObjectModification:
2018_09_26-AM-10_42_10
Theory : core_2
Home
Index