Nuprl Lemma : decidable__iff

[P,Q:ℙ].  (Dec(P)  Dec(Q)  Dec(P ⇐⇒ Q))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  iff: ⇐⇒ Q rev_implies:  Q uall: [x:A]. B[x] implies:  Q member: t ∈ T prop:
Lemmas referenced :  decidable__and2 decidable__implies decidable_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality isect_memberEquality independent_functionElimination hypothesis because_Cache Error :inhabitedIsType,  Error :universeIsType,  universeEquality

Latex:
\mforall{}[P,Q:\mBbbP{}].    (Dec(P)  {}\mRightarrow{}  Dec(Q)  {}\mRightarrow{}  Dec(P  \mLeftarrow{}{}\mRightarrow{}  Q))



Date html generated: 2019_06_20-AM-11_15_00
Last ObjectModification: 2018_09_26-AM-10_42_10

Theory : core_2


Home Index