Nuprl Lemma : minimal-not-not-xmiddle-from-program
∀[P,A:ℙ].  (((P ∨ (P ⇒ A)) ⇒ A) ⇒ A)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
or: P ∨ Q
Definitions unfolded in proof : 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
or: P ∨ Q
Lemmas referenced : 
or_wf
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
sqequalHypSubstitution, 
hypothesisEquality, 
cut, 
extract_by_obid, 
isectElimination, 
thin, 
functionEquality, 
cumulativity, 
hypothesis, 
inrEquality, 
because_Cache, 
inlEquality, 
universeEquality
Latex:
\mforall{}[P,A:\mBbbP{}].    (((P  \mvee{}  (P  {}\mRightarrow{}  A))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)
 Date html generated: 
2016_10_21-AM-09_35_35
 Last ObjectModification: 
2016_09_20-PM-02_58_25
Theory : core_2
Home
Index