Nuprl Lemma : non-uniform-triple-neg
∀A:ℙ. (¬¬¬A
⇐⇒ ¬A)
Proof
Definitions occuring in Statement :
prop: ℙ
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
not: ¬A
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
not: ¬A
,
false: False
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
decidable: Dec(P)
,
or: P ∨ Q
,
prop: ℙ
,
rev_implies: P
⇐ Q
Lemmas referenced :
dneg_elim_a,
not_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
independent_pairFormation,
cut,
thin,
hypothesis,
addLevel,
sqequalHypSubstitution,
impliesFunctionality,
introduction,
extract_by_obid,
isectElimination,
hypothesisEquality,
independent_functionElimination,
inlFormation,
productElimination,
levelHypothesis,
promote_hyp,
sqequalRule,
impliesLevelFunctionality,
voidElimination,
universeEquality
Latex:
\mforall{}A:\mBbbP{}. (\mneg{}\mneg{}\mneg{}A \mLeftarrow{}{}\mRightarrow{} \mneg{}A)
Date html generated:
2018_05_21-PM-00_00_17
Last ObjectModification:
2018_05_19-AM-07_14_21
Theory : core_2
Home
Index