Nuprl Lemma : non-uniform-triple-neg

A:ℙ(¬¬¬⇐⇒ ¬A)


Proof




Definitions occuring in Statement :  prop: all: x:A. B[x] iff: ⇐⇒ Q not: ¬A
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False uall: [x:A]. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q prop: rev_implies:  Q
Lemmas referenced :  dneg_elim_a not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut thin hypothesis addLevel sqequalHypSubstitution impliesFunctionality introduction extract_by_obid isectElimination hypothesisEquality independent_functionElimination inlFormation productElimination levelHypothesis promote_hyp sqequalRule impliesLevelFunctionality voidElimination universeEquality

Latex:
\mforall{}A:\mBbbP{}.  (\mneg{}\mneg{}\mneg{}A  \mLeftarrow{}{}\mRightarrow{}  \mneg{}A)



Date html generated: 2018_05_21-PM-00_00_17
Last ObjectModification: 2018_05_19-AM-07_14_21

Theory : core_2


Home Index