Nuprl Lemma : non-uniform-triple-neg
∀A:ℙ. (¬¬¬A 
⇐⇒ ¬A)
Proof
Definitions occuring in Statement : 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
dneg_elim_a, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
thin, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
impliesFunctionality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
inlFormation, 
productElimination, 
levelHypothesis, 
promote_hyp, 
sqequalRule, 
impliesLevelFunctionality, 
voidElimination, 
universeEquality
Latex:
\mforall{}A:\mBbbP{}.  (\mneg{}\mneg{}\mneg{}A  \mLeftarrow{}{}\mRightarrow{}  \mneg{}A)
Date html generated:
2018_05_21-PM-00_00_17
Last ObjectModification:
2018_05_19-AM-07_14_21
Theory : core_2
Home
Index