Nuprl Lemma : not_over_and_b
∀[A,B:ℙ].  ¬(A ∧ B) supposing (¬A) ∨ (¬B)
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
not_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
unionElimination, 
productElimination, 
independent_functionElimination, 
hypothesis, 
voidElimination, 
productEquality, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
Error :unionIsType, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[A,B:\mBbbP{}].    \mneg{}(A  \mwedge{}  B)  supposing  (\mneg{}A)  \mvee{}  (\mneg{}B)
Date html generated:
2019_06_20-AM-11_16_06
Last ObjectModification:
2018_09_26-AM-10_24_01
Theory : core_2
Home
Index