Nuprl Lemma : not_over_and_b

[A,B:ℙ].  ¬(A ∧ B) supposing A) ∨ B)


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: not: ¬A or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False or: P ∨ Q and: P ∧ Q prop:
Lemmas referenced :  not_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut lambdaFormation thin sqequalHypSubstitution unionElimination productElimination independent_functionElimination hypothesis voidElimination productEquality cumulativity hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache Error :unionIsType,  Error :universeIsType,  extract_by_obid isectElimination isect_memberEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[A,B:\mBbbP{}].    \mneg{}(A  \mwedge{}  B)  supposing  (\mneg{}A)  \mvee{}  (\mneg{}B)



Date html generated: 2019_06_20-AM-11_16_06
Last ObjectModification: 2018_09_26-AM-10_24_01

Theory : core_2


Home Index