Nuprl Lemma : not_over_implies

[A,B:ℙ].  (A  B) ⇐⇒ (¬¬A) ∧ B))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False prop: rev_implies:  Q
Lemmas referenced :  and_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin sqequalHypSubstitution hypothesis independent_functionElimination voidElimination hypothesisEquality lemma_by_obid isectElimination functionEquality productElimination sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination because_Cache universeEquality isect_memberEquality

Latex:
\mforall{}[A,B:\mBbbP{}].    (\mneg{}(A  {}\mRightarrow{}  B)  \mLeftarrow{}{}\mRightarrow{}  (\mneg{}\mneg{}A)  \mwedge{}  (\mneg{}B))



Date html generated: 2016_05_13-PM-03_11_10
Last ObjectModification: 2016_01_06-PM-05_25_47

Theory : core_2


Home Index