Nuprl Lemma : not_over_implies
∀[A,B:ℙ].  (¬(A 
⇒ B) 
⇐⇒ (¬¬A) ∧ (¬B))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
and_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
productElimination, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B:\mBbbP{}].    (\mneg{}(A  {}\mRightarrow{}  B)  \mLeftarrow{}{}\mRightarrow{}  (\mneg{}\mneg{}A)  \mwedge{}  (\mneg{}B))
Date html generated:
2016_05_13-PM-03_11_10
Last ObjectModification:
2016_01_06-PM-05_25_47
Theory : core_2
Home
Index