Nuprl Lemma : not_squash
∀[p:ℙ]. uiff(¬↓p;¬p)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
not: ¬A, 
squash: ↓T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
squash: ↓T, 
prop: ℙ
Lemmas referenced : 
squash_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
voidElimination, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
imageElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[p:\mBbbP{}].  uiff(\mneg{}\mdownarrow{}p;\mneg{}p)
Date html generated:
2016_05_13-PM-03_14_01
Last ObjectModification:
2016_01_06-PM-05_49_32
Theory : core_2
Home
Index