Nuprl Lemma : or-to-and-by-cases
∀[X:ℙ]. (Dec(X) ⇒ (∀[P,Q:ℙ].  ((P ⇒ X) ⇒ (Q ⇒ (¬X)) ⇒ {P ∨ Q ⇐⇒ (X ⇒ P) ∧ ((¬X) ⇒ Q)})))
Proof
Definitions occuring in Statement : 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
guard: {T}, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
or: P ∨ Q, 
not: ¬A, 
false: False, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
and_wf, 
or_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
isectElimination, 
productElimination, 
inlFormation, 
inrFormation, 
functionEquality, 
universeEquality
Latex:
\mforall{}[X:\mBbbP{}].  (Dec(X)  {}\mRightarrow{}  (\mforall{}[P,Q:\mBbbP{}].    ((P  {}\mRightarrow{}  X)  {}\mRightarrow{}  (Q  {}\mRightarrow{}  (\mneg{}X))  {}\mRightarrow{}  \{P  \mvee{}  Q  \mLeftarrow{}{}\mRightarrow{}  (X  {}\mRightarrow{}  P)  \mwedge{}  ((\mneg{}X)  {}\mRightarrow{}  Q)\})))
Date html generated:
2016_05_13-PM-03_17_22
Last ObjectModification:
2016_01_06-PM-05_20_15
Theory : core_2
Home
Index