Nuprl Lemma : singleton_properties

[T:Type]. ∀[a:T]. ∀[x:{a:T}].  (x a ∈ T)


Proof




Definitions occuring in Statement :  singleton: {a:T} uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T singleton: {a:T}
Lemmas referenced :  singleton_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename hypothesis lemma_by_obid isectElimination hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[x:\{a:T\}].    (x  =  a)



Date html generated: 2016_05_13-PM-03_15_20
Last ObjectModification: 2016_01_06-PM-05_21_57

Theory : core_2


Home Index