Nuprl Lemma : singleton_properties
∀[T:Type]. ∀[a:T]. ∀[x:{a:T}].  (x = a ∈ T)
Proof
Definitions occuring in Statement : 
singleton: {a:T}
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
singleton: {a:T}
Lemmas referenced : 
singleton_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].  \mforall{}[x:\{a:T\}].    (x  =  a)
Date html generated:
2016_05_13-PM-03_15_20
Last ObjectModification:
2016_01_06-PM-05_21_57
Theory : core_2
Home
Index