Nuprl Lemma : singleton_wf
∀[T:Type]. ∀[a:T].  ({a:T} ∈ Type)
Proof
Definitions occuring in Statement : 
singleton: {a:T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
singleton: {a:T}
, 
prop: ℙ
Lemmas referenced : 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a:T].    (\{a:T\}  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_18_04
Last ObjectModification:
2018_09_26-AM-10_25_11
Theory : core_2
Home
Index