Nuprl Lemma : singleton_wf

[T:Type]. ∀[a:T].  ({a:T} ∈ Type)


Proof




Definitions occuring in Statement :  singleton: {a:T} uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T singleton: {a:T} prop:
Lemmas referenced :  equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule setEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:T].    (\{a:T\}  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_18_04
Last ObjectModification: 2018_09_26-AM-10_25_11

Theory : core_2


Home Index