Nuprl Lemma : sq_stable_functionality

[A,B:ℙ].  ((A ⇐⇒ B)  (SqStable(A) ⇐⇒ SqStable(B)))


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q sq_stable: SqStable(P) squash: T member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  squash_wf sq_stable_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation cut hypothesis independent_functionElimination imageElimination introduction sqequalRule imageMemberEquality hypothesisEquality baseClosed extract_by_obid isectElimination universeEquality

Latex:
\mforall{}[A,B:\mBbbP{}].    ((A  \mLeftarrow{}{}\mRightarrow{}  B)  {}\mRightarrow{}  (SqStable(A)  \mLeftarrow{}{}\mRightarrow{}  SqStable(B)))



Date html generated: 2018_05_21-PM-00_00_11
Last ObjectModification: 2018_05_19-AM-07_13_30

Theory : core_2


Home Index