Nuprl Lemma : sq_stable_functionality
∀[A,B:ℙ].  ((A 
⇐⇒ B) 
⇒ (SqStable(A) 
⇐⇒ SqStable(B)))
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
squash_wf, 
sq_stable_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
cut, 
hypothesis, 
independent_functionElimination, 
imageElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
extract_by_obid, 
isectElimination, 
universeEquality
Latex:
\mforall{}[A,B:\mBbbP{}].    ((A  \mLeftarrow{}{}\mRightarrow{}  B)  {}\mRightarrow{}  (SqStable(A)  \mLeftarrow{}{}\mRightarrow{}  SqStable(B)))
Date html generated:
2018_05_21-PM-00_00_11
Last ObjectModification:
2018_05_19-AM-07_13_30
Theory : core_2
Home
Index