Nuprl Lemma : sq_stable_iff_stable
XM 
⇒ (∀P:ℙ. (SqStable(P) 
⇐⇒ Stable{P}))
Proof
Definitions occuring in Statement : 
xmiddle: XM
, 
sq_stable: SqStable(P)
, 
stable: Stable{P}
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
xmiddle: XM
Lemmas referenced : 
sq_stable_wf, 
sq_stable__from_stable, 
stable__from_decidable, 
stable_wf, 
xmiddle_wf, 
xmiddle-implies-stable
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
universeEquality
Latex:
XM  {}\mRightarrow{}  (\mforall{}P:\mBbbP{}.  (SqStable(P)  \mLeftarrow{}{}\mRightarrow{}  Stable\{P\}))
Date html generated:
2019_06_20-AM-11_15_45
Last ObjectModification:
2018_09_27-PM-05_36_21
Theory : core_2
Home
Index