Nuprl Lemma : squash_equal

[T:Type]. ∀[x,y:T].  uiff(↓y ∈ T;x y ∈ T)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] squash: T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop:
Lemmas referenced :  equal_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution imageElimination hypothesis lemma_by_obid isectElimination thin hypothesisEquality sqequalRule imageMemberEquality baseClosed productElimination independent_pairEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T].    uiff(\mdownarrow{}x  =  y;x  =  y)



Date html generated: 2016_05_13-PM-03_14_04
Last ObjectModification: 2016_01_06-PM-05_49_55

Theory : core_2


Home Index